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SUMMARY

An example is used to show how, in clearly formulated problems, non-observable
regressors may emerge. The model matrices and goal functions for the adjustment
are discussed. The propose being the adjustment of not only the regression
coefficients but also the non-observable regressors. Algorithms are presented to
carry out the adjustments. It is discussed how the adjustment may be validated
through analysis of the residues.
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1. Introduction

When a linear relation between a response variable and k regressors is
assumed we are led to adjust a linear regression whenever we have corresponding
values for all these variables. Let us now assume that one or more of the
regressors are non-observable. We intend to show that if the problem under
investigation has a sufficiently well-defined structure, non-observable regressors
(NOR) may be estimated as well as the regression coefficients. We will start by
discussing an example to see how non-observable regressors may emerge in
clearly stated problems. Next we present some preliminary results that we will
use. Then we consider the goal functions that are to be minimized. To carry out
this minimization we present two algorithms which we discuss in a separate
section. Lastly, we show how analysis of the residues may be used to validate the
adjustments.
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2. An example: Joint regression analysis

Joint regression analysis is a technique for the study of genotype X
environment based on the use of regressions. In most applications the genotypes
correspond to cultivars (e.g. Aastveit and Mejza, (1992)). Then, for each cultivar,
a linear regression of yield on productivity is adjusted. This idea was easy to
implement when one was analyzing a network of randomized block designs. To
each block was, attributed, as a productivity level, it's environment index
measured by it's mean yield (e.g. Gusmao (1985)). We now had only to adjust, for
each cultivar, a linear regression of it's yields on the environment indexes.
Nowadays randomized block designs have been largely replaced by & designs
(e.g. John and Williams, (1995)). The blocks are now incomplete so we cannot
measure the productivity of a block by it's average yield. To solve this problem,
Mexia et al. (1999) introduced the £, environment indexes. Let 2 be 0 when
the j-th cultivar is absent and 1 when the j-th cultivar is present, in the i-th block,
with yield y,,i=1,...,b, j=1,...,J. Then, with 0=(ap,....,a,0,) and
X=(x,...,x,) the vectors of regression coefficients and of environment
indexes, we minimize

b J
S(0,x) = zzpt}(yu —Q; _ﬂjxi)z'

i=l j=1

The incidence matrix of the network gives us the weights
Py i=1,...b,j=1,....,J, and thus enables joint estimation of regression
coefficients and environmental indexes. This example shows how a change in the
design led to emergence of a non-observable regressor and how the model
structure enabled it to be estimated.

3. Preliminary results
If we have a =vec([a,,...,a,]) we will write [a,,....,a,]= vec™ (a). Let us

assume that we have h known regressors and [ unobservable regressors. The
model matrix would then be

X(u)=[X,: X, ()],

where X contains the values of the known regressors and
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X,(u)=[u,,...,u;] = vec, (u),

the values of the non-observable regressors. Matrices X (u), X, and X,(u) will
have n rows and k=h+I, h and [ columns. With A* the Moore-Penrose
inverse of matrix A, the orthogonal projection matrices on the range space Q(u)
of X(u) and it's orthogonal complement Q(u)* will be
p)=XX ()= X)(X'@WX@)*'X'(u) and @) =1 —-p(u),
(e.g. Mexia, (1995)). Likewise the orthogonal projection matrices on the range
space &, of X, and its orthogonal complement QF will be
7, = X Xo = X, (X0 X,)* X and qool =1, -,

Moreover, we have the orthogonal direct sum Q(u)=Q, U w(u) of the
range spaces £, and w(u) of matrices X, and ¢;X,(u). Thus
dim(Q(u)) = dim(L,)) + dim(w(u)). We have the upper bounds k, h and [ for
these discussions.

Let us assume that dim(Q))=h and that dim(Q) <k, then the column
vectors of X, will be linearly independent and one, at least, of the column
vectors of X (u), say u j» will be a linear combination of the remaining column
vectors of X (u). There will also exist zeQ(u)", and if we add z to u ; wegeta
new model matrix X, u)= [ul,...,uj_l,z tU; Uy, d] and  matrix
Xo(@")=[X,:X,(u’)] will have the same number k=h+l of coluns as X (a),
moreover

dim(Q(u")) = dim(Q(u)) +1,
and

dim(w(u’)) = dim(w(u)) +1.

The models we have considered have very interesting properties of scale
invariance for the non-observable regressors. Thus, with ¢#0, we have
Q(cu) = Q(u) and w(cu) = w(u), thus, if ueC, cueC.

4. Goal functions

In the absence of non-observable regressors we would have to minimize

S(@)=|Y-X0

2
I

while now we have to minimize

SO.w= [Y-Xwo|.
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Besides S(0,u) we will also consider the partial goal function

S(0|u') =S5(0,u'"),
and

S(u|6)=S(®,u),

obtained from S(0,u) by fixing either u or 0. In the first case we take
u =u’and in the second 0 =90,

Putting W(u)=(X"(u)X(u)* X(u), we have ¢@(u)= X @)W (u), thus
with 8(u) =W (u)y we will have g(u)y = X (u)0(u), as well as

S(0]u’) lly - X (u")8(u) + X (u")(0(u) - 8) |

lly = X @"8(w) | +|| X @)(@)-6)|’> S,

where

Iy = X (w)Bcu) |
o) y|=S®u'|u’)
Min{S(@|u"},

S(u')

since y-X@"0u)e Qu) and X@"O@")-60)e Q") are mutually
orthogonal.

Due to scale invariance, if u#0, S'(Lu)=5‘(u), and, if Q(u)c Q(u),

llull
Su)>S (@). Thus the minima of § (u) will be found in the family of vectors of
€ with norm 1.

5. Algorithms

We start with the zig —zag iterative algorithm. To apply this algorithm it is
necessary that whatever 0° we may obtain an absolute minimum u(0") for
S((0)|0") thus we will have S(u|0")>S(@(0")]|0") for all possible
vectors u

For the first iteration we take the starting point u = u,. For instance if we use
& -designs the component of u, for each block may be the average yield of the
corresponding supra-block. Next we obtain the minimum 0(u,) = w(u,)y of
S(0(u,) and the corresponding u(O(uO)) We then rescale u(8(u,)) to
preserve the minimum and maximum of the environmental index.

Let # and u be the minimum and maximum initial values for the components
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of u. The kep these values invariant from iteration to iteration we take,

u—-u . - .
u,=u+=——®;-m), i=1,...,n,
Uu—ul

to obtain the component of vector u,. We now obtain S, = S(u,) and use u,
to start a second iteration. Rescaling, using u# and u, will be carred out at the end
of end iterations. .

With u; the vector obtained at the end of the i-th iteration and §;, = S(u,) we
will have §, > S, > §, >.... The iterations are stopped when S, —S,,, <d with
d a previously decided threshold. - :

With u the final vector adjusted we take O = 0(@l) to complete the
estimation. This algorithm performs well. Unfortunately convergence to the
absolute minimum of the goal function has not been established.

Another algorithm is based on a double minimization. The first minimization
replaces S(0,u) by S(u). Now, as we saw, we may assume that l|u| =1. This
point is important since the corresponding restriction S°1(u) of $°(u) is defined
in a compact set. We can now apply stochastic search algorithms, for instance see
Appel et a. (2003) and Esquivel (2006), to carry out this sthochastic
minimization. Since convergence of these algorithms is almost certain we can use
the pair of estimators (1,0) with 0 =0({d) and 1 the result of the second
minimization.

Moreover S(0,u) 2 S(u)> S() = S(&,0(d)) = S(4,8), so that (,8) is an
absolute minimum for S(0,u). In certain cases the second minimization can be
carried out analytically (e.g. Sequeira, (2006) and Pereira, (2006)). The first of
these cases was for logit models in which there were two additive factors. The
second one was for Joint Regression Analysis and randomized block designs.
These double minimization algorithms guarantee the absolute minimization of the
goal function thus overcoming the theoretical problems the use of the zig — zag
algorithms.

6. Residues analysis

Sometimes it may be worthwhile to analyze the residues.

Let (0,U) be a pair of adjusted vectors the corresponding residues vector will
be R=Y - X(u)0. We now assume that R is normal with covariance matrix
(approximately) equal to o>W with W a known positive semi-definite matrix.
Matrix W will have eigenvalues g, 2,...2a, >0,...,0 associated with mutually
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orthogonal eigenvectors i Jj =1,...,n. Thus the matrix

@,
G=D(a;?,...,a]"")| | |,

t

a

r

where D(a['?,...,a."*) is the diagonal matrix with principal elements
a'?,...,a’"”, will be defined, and GWG' = I,.

If the model holds and the parameters were correctly estimated the mean
vector of R will be null. Thus we may use the Shapiro-Wilk test to check if the
hypothesis H; : GR ~ N(0,6°L ), holds. This procedure was used by Nunes
(2006) in connection with Logit models. As an alternative approach we may
adjust a secondary model to the residues to see if the initial model once adjusted,
accounts for all relevant information. Absence of significant results for the
residues model will validate the initial adjustment. A residues model was adjusted
by Oliveira (2006) for Joint Regression Analysis.

Both these approaches may be used to validate adjustments obtained through
Zig — zag algorithms.

Another method of validation for zig —zag algorithms is to show that their
adjustments agree with the double minimization results. This agreement was
obtained by Sequeira (2006) for the already mentioned Logit model.
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